
Implementing Bump-Mapping
using Register Combiners

Implementing Bump-Mapping
using Register Combiners

Chris Wynn
NVIDIA Corporation
cwynn@nvidia.com

2

Overview

• Motivation
• Goals
• Required GPU Features

• Overview of Bump-Mapping Technique
• Lighting Equation
• Rendering Strategy

• Normal Maps
• Construction from Height Map
• Relationship to Texture Space

• Per-Pixel Lighting Setup
• Light and Half-angle Vector Calculations
• Normalization Cube-Maps
• Surface Local Space

• Register Combiner Configurations
• Diffuse, Diffuse + Specular, Self-Shadowing

3

Why Bump-Mapping?

• Offers Accurate Lighting at the Pixel Level

• Provides Increased Realism
• Surface detail
• Surface irregularities

• Simulates Complex Geometry
• Reduces geometric complexity required to capture a

certain level of detail
• Memory and Performance benefits

• Form of lossy geometry compression

• Looks Great!

4

Why Bump-Mapping?

• Simulate surface detail on an object by computing accurate
lighting on a per-pixel basis.

• Vertex lighting would require significantly more polygons to
capture same amount of detail.

5

Why Bump-Mapping?

• Particularly compelling in dynamic scenes
• Moving objects with respect to light(s)
• Animated characters

• Demo…

6

What GPU features required?

• Register Combiners – for per-pixel dot-products and
additional lighting equation math

• NV_register_combiners
ARB_texture_env_dot3 can be used instead, but with substantially less

flexibility in the lighting equation

• Dual or Quad Texture – for normal map, diffuse map, gloss
map, normalization cube-map, etc.

• ARB_multitexture
• Cube Maps – (optional) for per-pixel normalization

• ARB_texture_cube_map
• Vertex Program – (optional) for offloading per-vertex setup

code

• NV_vertex_program

7

Overview of Bump-Mapping
Technique

• Basic Idea:
• Start with a model.
• Provide per-pixel normals.
• Provide other required per-pixel lighting

parameters (light vector, half-angle vector, etc.).
• For each pixel:

Evaluate “some” lighting model using per-pixel
normal and other lighting parameters.

Typically use a variant of Blinn’s version of the
Phong lighting model:

outcol = diffusecol * (N•L) + speccol * (N•H)m

8

Overview of Bump-Mapping
Technique

• How this is done in real-time:
• Encode normals into a texture.
• Map the “normal map” texture onto a model using

standard 2D texture mapping.
• Compute L and/or H vectors on a per-vertex basis

and interpolate these across a triangle.
• Compute the necessary dot-products using texture

combining hardware (ex. register combiners)

Requires custom vertex processing AND some
pixel processing – ideal for GeForce-class GPUs.

9

Overview of Bump-Mapping
Technique

• Other lighting models possible but we’ll focus on
Blinn-Phong for simplicity :

outcol = diffusecol * (N’•L) + speccol * (N’•H)m

• Ignore (for now)
• ambient, spotlighting, shadowing, distance atten.

“Key” in implementing bump-mapping is
understanding:
1. How to provide the GPU with the per-pixel

parameters (vectors N’, L, and H)
2. How to compute the per-pixel dot-products

10

Providing Per-Pixel Parameters:
The Normal Map

• Per-pixel normal vectors specified using a
“Normal Map”

• Normal Map
• 2D texture map that encodes (x,y,z) unit-length

normal vectors.
• GL_RGB:

Signed (R,G,B) = (x,y,z)
Unsigned (R,G,B) = .5 * (x,y,z) + (.5, .5, .5)

• GL_HILO_NV:
Signed (HI,LO) = (x,y)
Unsigned N/A

11

Providing Per-Pixel Parameters:
The Normal Map

• Normal Map constructed from a Height Map
• Convert height-field to normal map using finite

differencing (di/ds, di/dt, scale)

The mostly chalk blue appearance
is because the “straight up” normal
is [0.5 0.5 1.0]

Here, normals in
the [-1..1] range
are compressed to
the [0..1] range

12

Providing Per-Pixel Parameters:
The Normal Map

• Texture the model with the Normal Map

In order to compute meaningful per-
pixel dot-products, the L, H, and N’
vectors must be defined in the
same coordinate space:

• World space
• Eye space
• Any other space

Must understand what space the
per-pixel normals are in…

… Per-pixel normals

Normal Map applied to sphere
model.

13

Understanding the Normal Map

• Recall how we constructed the normal map
• Finite differencing

(di/ds, di/dt, scale) = (1, 0, -di/ds) x (0, 1, -di/dt)
di/ds = change in height when moving along s axis
di/dt = change in height when moving along t axis

In a local region of constant height
(0, 0, scale) = (1, 0, 0) x (0, 1, 0)
and the normal points “straight up (or down)”

s

t

14

Understanding the Normal Map

• Finite differencing
(di/ds, di/dt, scale) = (1, 0, -di/ds) x (0, 1, -di/dt)

• When mapped onto a model in 3-space, di/ds and
di/dt correspond to the change in height when
moving along S and T direction vectors defined
in 3-space.
• S and T indicate the direction in which the texture

is mapped or “wrapped” onto the model.
• S, T, and SxT form a basis called “Texture Space”

– this is the space per-pixel normals are defined in

s

t

15

Understanding the Normal Map

• So…

Normals in the normal map are defined in Texture
Space (S,T, SxT)

AND
Texture Space is defined by how a 2D texture is
mapped onto a 3D model (more on this later)

• For correct per-pixel lighting we must either:
• Compute dot-products in Texture Space
• Compute dot products in some other space

• Would require transforming each N’ to the correct space
before using it

16

Providing Per-Pixel Parameters:
The Light and Halfangle Vectors

• In order to compute lighting, we need to specify per-pixel L
and H vectors.

• Since N’ is already in texture space, it’s convenient to
provide vectors in the same space

• Overview
• Compute vectors at each vertex of the model
• Interpolate (and renormalize) across a poly

! Unit-length vectors per-pixel

• Specifying L and H vectors is pretty much the same
• For simplicity, we’ll just consider L…

17

Providing Per-Pixel Parameters:
The Light and Halfangle Vectors

• For each vertex…
• compute unit-length L vector
• transform into Texture Space

• Specify the Texture Space L vector as a vertex parameter and
allow it to be interpolated

Two ways:
1. Specify L as an RGB color

• Colors clamped to [0,1] so must “range compress” the L vector
(i.e. glColor3f(.5(Lx+1), .5(Ly+1), .5(Lz+1)))

• Each R, G, B component interpolated independently
• Renormalize using the register combiners

2. Specify L as (s,t,r) texture coordinates and use a
“Normalization” Cube-Map to produce unit-length vectors

•

18

Providing Per-Pixel Parameters:
The Normalization Cube-Map

• Cube-Maps not only useful for Environment Mapping
• Useful for looking up ANY function of direction.

Think: Cube-Map = F(V) where V is a
direction vector

• Normalization Cube-Map encodes the function:
F(V) = normalize(V)

• Each texel of cube-map stores RGB
representing range-compressed
normalized vector from origin to the texel

• Magnitude does not alter cube-map
texture fetch
• Valid way to get normalized version of (s,t,r)
• 32x32x6 often sufficient (GL_NEAREST filtering)

19

Providing Per-Pixel Parameters:
The Normalization Cube-Map

• Normalization Cube-Map (unsigned RGB)

• What happens if you don’t re-normalize? (highlights lost
across poly!)

+X face-X face

+Y face

-Y face

+Z face - Z face

20

Why Interpolation Works…

• Bump-Mapping based on an assumption:
distance from actual surface to light >>
distance from simulated surface to actual surface

• This is a reasonable assumption for small scale detail.

simulated
surface

actual surface
(polygon) per-pixel

normal

Light vector
used in N’•L

Light vector
for simulated
surface

Good """" Bad ####

21

Computing Dot-Products using
the Combiners

Diffuse Lighting
tex0: normal map (N’)
tex1: normalization cube-map (L)

!!RC1.0

{

rgb {

spare0 = expand(tex0) . expand(tex1); // NdotL

}

}

out.rgb = spare0; // auto clamped to [0,1]

“expand” mapping assumes tex0 and tex1 are unsigned RGB
- not required for signed RGB formats

22

Computing Dot-Products using
the Combiners

Diffuse w/ Decal Modulation
tex0: normal map (N’)
tex1: normalization cube-map (L)
tex2: decal texture

!!RC1.0

{

rgb {

spare0 = expand(tex0) . expand(tex1); // NdotL

}

}

out.rgb = spare0 * tex2;

Single pass on GeForce3 (Two-pass on GeForce)

23

Computing Dot-Products using
the Combiners

Add Ambient w/ const. color
tex0: normal map (N’)
tex1: normalization cube-map (L)
tex2: decal texture

!!RC1.0

const0 = (0.2, 0.2, 0.2, 0); // Ambient

{

rgb {

spare0 = expand(tex0) . expand(tex1); // NdotL

}

}

out.rgb = spare0 * tex2 + const0;

24

Computing Dot-Products using
the Combiners

Specular Lighting (N’•H)
tex0: normal map (N’)
tex1: normalization cube-map (H)

!!RC1.0

{

rgb {

spare0 = expand(tex0) . expand(tex1); // NdotH

}

}

out.rgb = spare0;

(N•H)m where m = 1
What about higher powers of m?

Modulate w/ a constant for
specular color

25

Computing Dot-Products using
the Combiners

Specular Lighting (N’•H)4

!!RC1.0

{

rgb {

spare0 = expand(tex0) . expand(tex1); // NdotH

}

}

{

rgb {

spare0 = unsigned(spare0) * unsigned(spare0);

}

}

final_product = spare0 * spare0;

out.rgb = final_product; Clamp to [0,1] before squaring

26

Computing Dot-Products using
the Combiners

Diffuse + Specular
decalcol * (N’•L) + speccol * (N’•H)4

tex0: normal map (N’)
tex1: normalization cube-map (L)
tex2: normalization cube-map (H)
tex3: decal texture

27

Computing Dot-Products using
the Combiners

Diffuse + Specular: decalcol * (N’•L) + speccol * (N’•H)4

!!RC1.0

const0 = (0.2, 0.2, 0.2, 0); // Spec. color

{

rgb {

spare0 = expand(tex0) . expand(tex1); // NdotL

spare1 = expand(tex0) . expand(tex2); // NdotH

}

}

{

rgb {

spare0 = tex3 * unsigned(spare0); // decal*NdotL

spare1 = unsigned(spare1) * spare1; // NdotH 2

}

}

final_product = spare1 * spare1; // NdotH 4

out.rgb = const0 * final_product + spare0;

28

Surface Self-Shadowing

• Previous examples do not self-shadow correctly
• Two kinds of self-shadowing

• max(0, L•N’) based on the perturbed normal
• Also should clamp when L•N goes negative!

N’ N

L

N’N

L

Surface should self-shadow due to perturbed
normal (i.e. L • N’ < 0)

Surface should self-shadow due to unperturbed
normal (i.e. L • N < 0)

29

Self-Shadowing Computation

• Modulate specular and diffuse by: (Lz< 0) ? 0 : 1
• Use mux() in the combiners
• Simple, but may result in “hard” shadow boundary

• Possible winking and popping of highlights.
• Requires alpha portions of two combiners
{ alpha {

spare0 = tex1.b; // spare0.a = Lz (unexpanded);

}}

{ alpha {

discard = zero;

discard = one;

spare0 = mux(); // spare0.a = (Lz < 0) ? 0 : 1

}}

out.rgb = ... * spare0.a;

30

Self-Shadowing Computation

• Better, modulate by min(8*max(Lz,0), 1)
• Steep ramp eliminates popping
• Requires alpha portion of only one combiner

• In either case, illumination does not appear on
geometric “back side”.

{ alpha {

discard = expand(tex1.b);

discard = expand(tex1.b);

spare0 = sum();

scale_by_four(); // spare0.a = 8 * Lz

}}

out.rgb = ... * unsigned(spare0.a);

31

Normalization in the Combiners

• Previous examples used Normalization Cube-Map
• Not necessary on GeForce3

• By using an approximation technique, can normalize in the
combiners

• It can be shown (by numerical means) that…

Normalize(V) ≅≅≅≅ V/2 * (3 – V•V) when
1. V is a vector derived from the interpolation of unit-length

vectors across a polygon AND
2. The angle between all pairs of the original per-vertex vectors is

no more than 40º (or so).

For models of reasonable tesselation (and/or reasonable
distance to the light and viewer) #2 holds

32

Normalization in the Combiners

• Simplifying the approx.
V/2 * (3 – V•V) = 1.5V – 0.5V * (V•V)

= V + 0.5V – 0.5V * (V•V)
= V + 0.5V * (1 – (V•V))

• Compute simplified approx. in 2 general combiner
stages…

33

Normalization in the Combiners

Suppose col0 contains interpolated (de-normalized) vector
compressed into [0..1] range

{ // normalize V (step 1.)

rgb {

spare0 = expand(col0) . expand(col0); // VdotV

}

}

{ // normalize V (step 2.)

rgb {

discard = expand(col0); // V in [-1..1]

discard = half_bias(col0) * unsigned_invert(spare0);

col0 = sum();

}

}
1 – V•V V in [-0.5..0.5] ≡≡≡≡ 0.5V

col0 = V + 0.5V(1 – V•V)

34

Normalization in the Combiners

• Normalization of one vector requires 2 general
combiners, but two vectors can be normalized in 3

• Combiner normalization FASTER than using cube-
maps!

35

For More Information…

• NVIDIA OpenGL SDK
• Technical Demos
• Bump-Mapping Lab Exercises

• Vertex Programming of Setup Code
• Register combiner configuration

• Additional Bump-Mapping Presentations
• Per-Pixel Lighting Mathematical background
• Texture Space
• Register Combiners
• Bump-Mapping of Animated Models

• Available at NVIDIA Developer Website:
http://www.nvidia.com/developer

36

Acknowledgements

• Scott Cutler
• Newton-Raphson fast “combiner normalization” technique.

• Cass Everitt
• Earth demo.

• Mark Kilgard
• Slide content.
• “A Practical and Robust Bump-mapping Technique for

Today’s GPUs” white paper.

37

Questions, comments, feedback

• Chris Wynn, cwynn@nvidia.com
• www.nvidia.com/developer

